Suzhou Electric Appliance Research Institute
期刊號: CN32-1800/TM| ISSN1007-3175

SUBSCRIPTION MANAGEMENT

發(fā)行征訂

首頁 >> 發(fā)行征訂 >> 征訂方式

基于并行分子微分進化算法的虛擬電廠多目標優(yōu)化調(diào)度

來源:電工電氣發(fā)布時間:2025-10-29 09:29瀏覽次數(shù):21

基于并行分子微分進化算法的虛擬電廠多目標優(yōu)化調(diào)度

姜磊1,龐亞亞2,姜雨宏3
(1 國網(wǎng)山東省電力公司超高壓公司,山東 濟南 250118;
2 國網(wǎng)山東省電力公司臨沂供電公司,山東 臨沂 276000;
3 山東理工職業(yè)學院 能源與材料工程學院,山東 濟寧 272067)
 
    摘 要:針對大規(guī)模風電、光伏等清潔能源出力隨機性與熱電聯(lián)產(chǎn)機組“以熱定電”運行約束帶來的調(diào)度挑戰(zhàn),構建了集成高比例可再生能源、熱電聯(lián)產(chǎn)系統(tǒng)、電熱儲能及需求響應機制的虛擬電廠熱電聯(lián)合經(jīng)濟調(diào)度模型。提出基于分子動力學“近相斥”原理改進的多目標并行分子微分進化算法,構建全異步并行架構、精英個體動態(tài)遷移的雙層并行計算策略,有效克服了傳統(tǒng)群智能算法存在的早熟收斂與計算效率不足問題。仿真結(jié)果顯示:與傳統(tǒng)的微分進化算法相比,能夠?qū)崿F(xiàn)92.3%的全局收斂成功率,計算時間大幅縮短;所構建的調(diào)度模型在將風電、光電全部消納的同時滿足合同供熱需求,實現(xiàn)煤耗量降低及凈收益提升,充分驗證了模型與算法的實用價值。
    關鍵詞: 虛擬電廠;分子微分進化算法;風光發(fā)電模擬;熱電聯(lián)合調(diào)度;電熱儲能;雙層并行計算
    中圖分類號:TM715 ;TM731     文獻標識碼:A     文章編號:1007-3175(2025)10-0024-07
 
Multi-Objective Optimization Scheduling of Virtual Power Plants Based on
Parallel Molecular Differential Evolution Algorithm
 
JIANG Lei1, PANG Ya-ya2, JIANG Yu-hong3
(1 Ultra-High Voltage Company of State Grid Shandong Electric Power Company, Jinan 250118, China;
2 Linyi Power Supply Company of State Grid Shandong Electric Power Company, Linyi 276000, China;
3 School of Energy and Materials Engineering, Shandong Polytechnic College, Jining 272067, China)
 
    Abstract: In response to the dispatching challenges brought about by the randomness of the output of large-scale clean energy such as wind power and photovoltaic power and the operation constraints of cogeneration units based on heat to determine power generation, a virtual power plant combined heat and power economic dispatching model integrating a high proportion of renewable energy, cogeneration systems, electric-thermal energy storage and demand response mechanisms has been constructed. An improved multi-objective parallel molecular differential evolution algorithm based on the“proximity repulsion”principle of molecular dynamics is proposed, a double-layer parallel computing strategy with a fully asynchronous parallel architecture and dynamic migration of elite individuals is constructed, effectively overcoming the problems of premature convergence and insufficient computational efficiency existing in traditional swarm intelligence algorithms. The simulation results show that compared with the traditional differential evolution algorithm, it can achieve a global convergence success rate of 92.3%, and the computing time is significantly shortened. The constructed dispatching model not only fully consumes wind power and photovoltaic power but also meets the contracted heating demand,achieving a reduction in coal consumption and an increase in net income, which fully validates the practical value of the model and algorithm.
    Key words: virtual power plant (VPP); molecular differential evolution algorithm; wind/photovoltaic power generation simulation; combined thermo-electric dispatch; electric-thermal energy storage; dual-layer parallel computing
 
參考文獻
[1] 彭春華,謝鵬,陳臣. 大規(guī)模光伏電站接入電網(wǎng)可調(diào)節(jié)魯棒優(yōu)化調(diào)度[J] . 中國電機工程學報,2014,34(25) :4324-4332.
[2] 黃昕穎, 黎建, 楊莉, 等. 基于投資組合的虛擬電廠多電源容量配置[J] . 電力系統(tǒng)自動化,2015,39(19) :75-81.
[3] 周博,呂林,高紅均,等. 考慮熱電聯(lián)合調(diào)度的虛擬電廠交易策略研究[J] . 電測與儀表,2019,56(10) :75-81.
[4] 范松麗,艾芊,賀興. 基于機會約束規(guī)劃的虛擬電廠調(diào)度風險分析[J] . 中國電機工程學報,2015,35(16) :4025-4034.
[5] WANG D, PARKINSON S, MIAO W, et al.Hierarchical market integration of responsive loads as spinning reserve[J].Applied Energy,2013,104 :229-238.
[6] 彭春華,張金克,陳露,等. 計及差異化需求響應的微電網(wǎng)源荷儲協(xié)調(diào)優(yōu)化調(diào)度[J] . 電力自動化設備,2020,40(3) :1-7.
[7] 劉世成,張建華,劉宗岐. 并行自適應粒子群算法在電力系統(tǒng)無功優(yōu)化中的應用[J] . 電網(wǎng)技術,2012,36(1) :108-112.
[8] 王毅,于明,李永剛. 基于改進微分進化算法的風電直流微網(wǎng)能量管理[J] . 電網(wǎng)技術,2015,39(9) :2392-2397.
[9] 孫惠娟, 蒙錦輝, 彭春華. 風-光-水-碳捕集多區(qū)域虛擬電廠協(xié)調(diào)優(yōu)化調(diào)度[J] . 電網(wǎng)技術,2019,43(11) :4040-4049.
[10] ZHOU Bin, LIU Xi, CAO Yijia, et al.Optimal scheduling of virtual power plant with battery degradation cost[J].IET Generation, Transmission & Distribution,2016,10(3) :712-725.
[11] 李旭東,艾欣,胡俊杰,等. 計及碳交易機制的核-火-虛擬電廠三階段聯(lián)合調(diào)峰策略研究[J]. 電網(wǎng)技術,2019,43(7) :2460-2468.
[12] 彭春華,孫惠娟. 基于非劣排序微分進化的多目標優(yōu)化發(fā)電調(diào)度[J] . 中國電機工程學報,2009,29(34) :71-76.
[13] 苗新強,金先龍,丁峻宏. 大規(guī)模并行結(jié)構動力分析分層計算方法[J] . 計算力學學報,2014,31(6) :702-708.
[14] 舒航,李強,鄭琴. 基于并行粒子群優(yōu)化算法的變分資料同化[J] . 解放軍理工大學學報(自然科學版),2014,15(6) :583-590.
[15] 陳大宇,張粒子,馬歷. 儲能參與的 AGC 市場出清優(yōu)化建模新方法[J] . 電力系統(tǒng)自動化,2014,38(13) :79-84.